If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8r^2-3=0
a = 8; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·8·(-3)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*8}=\frac{0-4\sqrt{6}}{16} =-\frac{4\sqrt{6}}{16} =-\frac{\sqrt{6}}{4} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*8}=\frac{0+4\sqrt{6}}{16} =\frac{4\sqrt{6}}{16} =\frac{\sqrt{6}}{4} $
| 0=16t^2+78+20 | | 4x-36=6 | | 1-2x+2x=13x | | 5z^2+2z+4=0 | | 37-9=hX4 | | 27.04=5g+3.79 | | (X+1)(x-2)=3x | | 0=16t^2+78+30 | | 10x2=490 | | -4(x-2)=(-2+x) | | 11/x+3/4=5/3 | | 2.3x-19=27 | | {x}+5=18 | | 5x^2+2+9=0 | | 5x^+2x+9=0 | | 9p^2+6p+9=0 | | 279+e+62=498 | | 7/9x-5/5=7/8 | | 3q^2-5q-8=9 | | 5z+z+2=0 | | 33+2x=16+7x | | 8y+5y+4=0 | | 6r^2-9r-4=0 | | 0.45x+0.88=0.20 | | x^2-17x=-52 | | 7a-2a=30a+3a | | 2x/((0.27-x)(0.27-x))=85 | | -5(2x-19)=2(x-1)-47 | | 8(x-3=5x-22 | | x/5+2x=1/3 | | 1/7+-1/2=x | | 6x-48+4x+36=180 |